23 research outputs found

    The Generalization Error Bound for the Multiclass Analytical Center Classifier

    Get PDF
    This paper presents the multiclass classifier based on analytical center of feasible space (MACM). This multiclass classifier is formulated as quadratic constrained linear optimization and does not need repeatedly constructing classifiers to separate a single class from all the others. Its generalization error upper bound is proved theoretically. The experiments on benchmark datasets validate the generalization performance of MACM

    Handover Necessity Estimation for 4G Heterogeneous Networks

    Get PDF
    One of the most challenges of 4G network is to have a unified network of heterogeneous wireless networks. To achieve seamless mobility in such a diverse environment, vertical hand off is still a challenging problem. In many situations handover failures and unnecessary handoffs are triggered causing degradation of services, reduction in throughput and increase the blocking probability and packet loss. In this paper a new vertical handoff decision algorithm handover necessity estimation (HNE), is proposed to minimize the number of handover failure and unnecessary handover in heterogeneous wireless networks. we have proposed a multi criteria vertical handoff decision algorithm based on two parts: traveling time estimation and time threshold calculation. Our proposed methods are compared against two other methods: (a) the fixed RSS threshold based method, in which handovers between the cellular network and the WLAN are initiated when the RSS from the WLAN reaches a fixed threshold, and (b) the hysteresis based method, in which a hysteresis is introduced to prevent the ping-pong effect. Simulation results show that, this method reduced the number of handover failures and unnecessary handovers up to 80% and 70%, respectively

    Channel Selection Based on Trust and Multiarmed Bandit in Multiuser, Multichannel Cognitive Radio Networks

    Get PDF
    This paper proposes a channel selection scheme for the multiuser, multichannel cognitive radio networks. This scheme formulates the channel selection as the multiarmed bandit problem, where cognitive radio users are compared to the players and channels to the arms. By simulation negotiation we can achieve the potential reward on each channel after it is selected for transmission; then the channel with the maximum accumulated rewards is formally chosen. To further improve the performance, the trust model is proposed and combined with multi-armed bandit to address the channel selection problem. Simulation results validate the proposed scheme

    Dynamic Flow-Adaptive Spectrum Leasing with Channel Aggregation in Cognitive Radio Networks

    Get PDF
    Cognitive radio networks (CRNs), which allow secondary users (SUs) to dynamically access a network without affecting the primary users (PUs), have been widely regarded as an effective approach to mitigate the shortage of spectrum resources and the inefficiency of spectrum utilization. However, the SUs suffer from frequent spectrum handoffs and transmission limitations. In this paper, considering the quality of service (QoS) requirements of PUs and SUs, we propose a novel dynamic flow-adaptive spectrum leasing with channel aggregation. Specifically, we design an adaptive leasing algorithm, which adaptively adjusts the portion of leased channels based on the number of ongoing and buffered PU flows. Furthermore, in the leased spectrum band, the SU flows with access priority employ dynamic spectrum access of channel aggregation, which enables one flow to occupy multiple channels for transmission in a dynamically changing environment. For performance evaluation, the continuous time Markov chain (CTMC) is developed to model our proposed strategy and conduct theoretical analyses. Numerical results demonstrate that the proposed strategy effectively improves the spectrum utilization and network capacity, while significantly reducing the forced termination probability and blocking probability of SU flows.publishedVersio

    Leasing-Based Performance Analysis in Energy Harvesting Cognitive Radio Networks

    No full text
    In this paper, we consider an energy harvesting cognitive radio network (CRN), where both of primary user (PU) and secondary user (SU) are operating in time slotted mode, and the SU powered exclusively by the energy harvested from the radio signal of the PU. The SU can only perform either energy harvesting or data transmission due to the hardware limitation. In this case, the entire time-slot is segmented into two non-overlapping fractions. During the first sub-timeslot, the SU can harvest energy from the ambient radio signal when the PU is transmitting. In order to obtain more revenue, the PU leases a portion of its time to SU, while the SU can transmit its own data by using the harvested energy. According to convex optimization, we get the optimal leasing time to maximize the SU’s throughput while guaranteeing the quality of service (QoS) of PU. To evaluate the performance of our proposed spectrum leasing scheme, we compare the utility of PU and the energy efficiency ratio of the entire networks in our framework with the conventional strategies respectively. The numerical simulation results prove the superiority of our proposed spectrum leasing scheme

    Mobile Tracking Based on Support Vector Regressors Ensemble and Game Theory

    No full text
    A two-step tracking strategy is proposed to mitigate the adverse effect of non-line-of-sight (NLOS) propagation to the mobile node tracking. This strategy firstly uses support vector regressors ensemble (SVRM) to establish the mapping of node position to radio parameters by supervising learning. Then by modelling the noise as the adversary of position estimator, a game between position estimator and noise is constructed. After that the position estimation from SVRM is smoothed by game theory. Simulations show that the proposed strategy results in the more accurate performance, especially in the harsh environment
    corecore